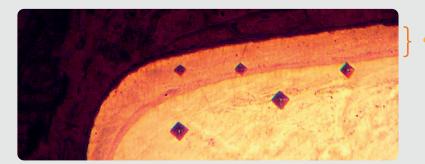
6. APPLICATIONS BENEFITING FROM THE WHITE LAYER

• Gears and Drivetrain Components: For improved wear resistance.

• Some Cutting Tools: To maintain sharpness and durability.


• Sliding Surfaces: Where low friction and high wear resistance are needed.

1. DEFINITION

IT IS A NITRIDING PHENOMENON:

A thin, hard surface layer formed on steel during nitriding, characterized by a high concentration of iron nitrides.

5. RECOMMENDED USES

- Components Requiring High Wear Resistance: Gears, bearings and brake rotors.
 - Replacing hard chrome | Where surface hardness and corrosion resistance are crucial.

Not Recommended for:

Components Undergoing High Impact Loads | Due to potential brittleness

(or Compound Zone) To Composition of Com

2. MEASUREMENT AND FORMING

- Thickness: Generally ranges from a few microns up to 25 microns.
- Formation: Results from a chemical reaction between nitrogen ions and the iron in steel during plasma nitriding.

4. DISADVANTAGES

- Potential Brittleness: May lead to increased brittleness, reducing impact resistance.
 - Difficult to Machine: Hardness can make post-treatment machining challenging.
- Inconsistency: Thickness and properties can vary based on nitriding conditions, affecting performance.

3. ADVANTAGES

- **Enhanced Surface Hardness:** Significantly increases sliding wear resistance.
- Reduced Friction: Beneficial for parts requiring low frictional properties.
- Improved corrosion Resistance: Increases the corrosion resistance of the surface.

